Sunday, June 20, 2010

ARDUINO introduction

An Arduino is a single-board microcontroller and a software suite for programming it. The hardware consists of a simple open hardware design for the controller with an Atmel AVR processor and on-board I/O support. The software consists of a standard programming language and the boot loader that runs on the board.

Arduinos are programmed using the Wiring language, which is based on C++ with a few simplifications. The Processing programming language is often used to interface a computer with an Arduino, often to create unorthodox interfaces.


Hardware

An Arduino board consists of an 8-bit Atmel AVR microcontroller with complementary components to facilitate programming and incorporation into other circuits. An important aspect of the Arduino is the standard way that connectors are exposed allowing the CPU board to be connected to a variety of interchangeable add-on modules (known as shields). Official Arduinos have used the megaAVR series of chips, specifically the ATmega8, ATmega168, ATmega328, and ATmega1280. A handful of other processors have been used by Arduino clones. Most boards include a 5-volt linear regulator and a 16 MHz crystal oscillator (or ceramic resonator in some variants), although some designs such as the LilyPad run at 8 MHz and dispense with the onboard voltage regulator due to specific form-factor restrictions. An Arduino's microcontroller is also pre-programmed with a bootloader that simplifies uploading of programs to the on-chip flash memory, compared with other devices that typically need an external chip programmer.

At a conceptual level, when using the Arduino software stack all boards are programmed over an RS-232 serial connection, but the way in which this is implemented varies by hardware version. Serial Arduino boards contain a simple inverter circuit to convert between RS-232-level and TTL-level signals. Current Arduino boards are programmed via USB, implemented using USB-to-serial adapter chips such as the FTDI FT232. Some variants, such as the Arduino Mini and the unofficial Boarduino, use a detachable USB-to-serial adapter board or cable, Bluetooth or other methods. (When used with traditional microcontroller tools instead of the Arduino IDE, standard AVR ISP programming is used.)

The Arduino board exposes most of the microcontroller's I/O pins for use by other circuits. The Diecimila, now superseded by the Duemilanove, for example, provides 14 digital I/O pins, 6 of which can produce PWM signals, and 6 analog inputs. These pins are available on the top of the board, via female 0.1 inch headers. Several plug-in application boards known as "shields" are also commercially available.

The Arduino Nano, and Arduino-compatible Barebones and Boarduino boards provide male header pins on the underside of the board to be plugged into solderless breadboards.
Related Posts Plugin for WordPress, Blogger...
Disclaimer: All the information in this blog is just gathered from different sites in the web and placed here and I am not the owner for these content

Popular Projects

Followers

My Blog List

Give Support

Give Support
Encourage me Through Comments & by Following